
A Four-Layer Framework for Data Standards

This is a brief and general description of four “layers” of work that build upon each other in a data
standard design effort. All four layers do not have to exist to constitute a data standard. However, as
more layers are added, application interoperability is enhanced and the cost of systems integration
decreases.

1. Data Dictionary: This is simply
a list of data elements each
with a title, definition and
sometimes a format. For
example: Title: Birth Date;
Definition: Day the individual
was born; Format: year-month-
day.

2. Logical Data Model: Defines
entities as collections of
properties. Each property is an
element in the data dictionary.
In other words, an element becomes a property when it’s assigned to an entity. Also defines
relationships between entities. For example, a Student entity might include the properties
name, birthdate, gender, address, etc. The Student entity type would have a many to many
relationship with the Class entity type.

3. Serialization: This is a concrete format in which entities may be stored or exchanged. Two
frameworks for serialization are XML and JSON but custom serializations are also common. The
conversion from a Data Model to a particular Serialization such as XML isn’t automatic. There
still needs to be a specification that says exactly how the data model is rendered into a
particular serialization. There may be (and often are) multiple serializations of the same data
model. Synonymous terms include “physical data model,” “binary format,” “marshaled format,”
“binding,” “storage format,” or “encoding.”

4. Protocol: The infrastructure over which the serialized representations of Data Model Entities
are accessed and exchanged. When it is standardized for a particular domain, the entire
communication between applications is defined and out-of-the-box interoperability between
conforming applications becomes possible. Protocol really contains many layers, hence the term
“protocol stack.” Typical layers include Messaging Framework (e.g. Publish/Subscribe,
Request/Response, Create/Read/Update/Delete, REST, SOAP, Enterprise Service Bus), Transport
(e.g. HTTP(S) or FTP) and Network (e.g. TCP/IP).

The task of a systems integrator becomes easier and less expensive as more layers are standardized.
When all four layers are addressed, systems integration should be a matter of proper configuration
settings with no custom programming required. On the other hand, standards (or portions thereof) that
are limited to the higher levels of the stack have broader applicability. For example, a principal benefit of
a standardized Data Dictionary is reducing the risk that data may be interpreted differently by different
systems. So, even this first step yields significant and broad-reaching benefits. Because of this, it’s
important to clearly delineate between the layers even when a single standard or specification
addresses more than one.

Previous versions of this document referred to Layer 2 as simply “Data Model.” However, the Common Education Data
Standards project calls this this the “Logical Data Model” and Layer 3 the “Physical Data Model.” This edition compromises by
using “Logical Data Model” for Layer 2 but retains “Serialization” for Layer 3 as we feel it’s a more accurate description.

Released into the public domain under a CC0 disclaimer (http://creativecommons.org/publicdomain/zero/1.0/). Redistribute or
repurpose at will. Revised 1 October 2012.

1. Data
Dictionary

Definition of data elements
including name and
interpretation.

2. Logical
Data Model

Logical definition of entities
as groups of elements and
inter-entity relationships.

3.
Serialization

Concrete digital format for
storage or transmission of
entities.

4.
Protocol

Transport layer and message
formats for exchanging
serialized entities.

Ease
 o

f D
ata Exch

an
ge an

d
D

e
p

th
 o

f System
s In

tegratio
n

B
ro

ad
er

 A
p

p
lic

ab
ili

ty
 a

n
d

Lo
n

ge
vi

ty
 o

f
St

an
d

ar
d

s

http://creativecommons.org/publicdomain/zero/1.0/

